If (1+x)n=C0+C1x+C2x2+.......+Cnxn, then
C1C0 + 2C2C1 + 3C3C2 + ........+ nCnCn−1 =
C1C0 + 2. C2C1 + 3. C3C2+ ........+n. CnCn−1
= n1+2n(n−1)1.2n+3n(n−1)(n−2)3.2.1n(n−1)1.2+......+n.1n
=n + (n-1) + (n-2)........ +1 = ∑n = n(n+1)2
Trick: Put n = 1, 2, 3........., then S1 = 1C11C0 = 1,
S2 = 2C12C0 + 2 2C22C1 = 21 + 2. 12 = 2 + 1 = 3
By option, (put n=1, 2..........) (a) and (b) does not
hold condition, but (c) n(n+1)2, put n = 1, 2.........
S1 = 1, S2 = 3 which is correct.