We have,
(1+x)n=C0+C1x+C2x2+C3x3+C4x4+........+Cnxn ……… (1)
On putting x=1 in equation (1), we get
2n=C0+C1+C2+C3+C4+........+Cn ……… (2)
On putting x=−1 in equation (1), we get
0=C0−C1+C2−C3+C4−........ ……… (3)
On adding equation (2) and (3), we get
2n=2C0+2C2+2C4+........
2n−1=C0+C2+C4+C6+........
Hence, this is the answer.