wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (1+x)n=C0+C1x+C2x2+...+Cnxn then show that n!x(x+1)(x+2)(x+3)...(x+n)=C0xC1x+1...+(1)nCnx+n.

Open in App
Solution

Let n!x(x+1)(x+2)(x+3)...(x+n)=A0x+A1x+1+A2x+2+A3x+3+...+Anx+n ...(1)
Therefore
A0=limx0x[n!x(x+1)(x+2)(x+3)...(x+n)]=limx0[n!x(x+1)(x+2)(x+3)...(x+n)]
=n!1.2.3...n=n!n!=1=nC0=C0
A1=limx1(x+1)[n!x(x+1)(x+2)(x+3)...(x+n)]=limx1[n!x(x+1)(x+2)(x+3)...(x+n)]
=n!(1)(1)(2)...(n1)×nn=n!nn!=n=nC1=C1
A2=limx3(x+2)[n!x(x+1)(x+2)(x+3)...(x+n)]=limx2[n!x(x+1)(x+2)(x+3)...(x+n)]
=n!(2)(1)(1)...(n2)=n(n1)(n2)!1(n2)!=n(n1)2=nC2=C2
A3=limx2(x+3)[n!x(x+1)(x+2)(x+3)...(x+n)]=limx2[n!x(x+1)(x+2)(x+3)...(x+n)]
=n!(3)(2)(1)(1)...(n3)=n(n1)(n2)(n3)1.2.3(n3)=(n1)(n2)1.2.3=nC3=C3
Similarly
An=limxn(x+n)[n!x(x+1)(x+2)(x+3)...(x+n)]=limxn[n!x(x+1)(x+2)(x+3)...(x+n)]
=n!(n)(n+1)(n+2)(n+3)...(1)=n!(1)n[n(n1)(n2)(n3)...1]
=(1)nn!(1)2nn!=(1)n
Substituting values of A1,A2,A3,...,An in (1) we get
n!x(x+1)(x+2)(x+3)...(x+n)=C0xC1x+1+C2x+2C3x+3+...+(1)nCnCnx+n

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Expansions and Standard Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon