Let
n!x(x+1)(x+2)(x+3)...(x+n)=A0x+A1x+1+A2x+2+A3x+3+...+Anx+n ...(1)
Therefore
A0=limx→0x[n!x(x+1)(x+2)(x+3)...(x+n)]=limx→0[n!x(x+1)(x+2)(x+3)...(x+n)]=n!1.2.3...n=n!n!=1=nC0=C0
A1=limx→−1(x+1)[n!x(x+1)(x+2)(x+3)...(x+n)]=limx→−1[n!x(x+1)(x+2)(x+3)...(x+n)]
=n!(−1)(1)(2)...(n−1)×nn=−n!nn!=−n=−nC1=−C1
A2=limx→−3(x+2)[n!x(x+1)(x+2)(x+3)...(x+n)]=limx→−2[n!x(x+1)(x+2)(x+3)...(x+n)]
=n!(−2)(−1)(1)...(n−2)=n(n−1)(n−2)!1(n−2)!=n(n−1)2=nC2=C2
A3=limx→−2(x+3)[n!x(x+1)(x+2)(x+3)...(x+n)]=limx→−2[n!x(x+1)(x+2)(x+3)...(x+n)]
=n!(−3)(−2)(−1)(1)...(n−3)=n(n−1)(n−2)(n−3)1.2.3(n−3)=(n−1)(n−2)1.2.3=−nC3=−C3
Similarly
An=limx→n(x+n)[n!x(x+1)(x+2)(x+3)...(x+n)]=limx→−n[n!x(x+1)(x+2)(x+3)...(x+n)]
=n!(−n)(−n+1)(−n+2)(−n+3)...(−1)=n!(−1)n[n(n−1)(n−2)(n−3)...1]
=(−1)nn!(−1)2nn!=(−1)n
Substituting values of A1,A2,A3,...,An in (1) we get
n!x(x+1)(x+2)(x+3)...(x+n)=C0x−C1x+1+C2x+2−C3x+3+...+(−1)nCnCnx+n