If (1+x)n=n∑r=0nCrxr and n∑r=01nCr=a, then the value of ∑0≤i≤n∑0≤j≤n(inCi+jnCj) is equal to
A
n2a
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
n22a
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
na2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
na(n+1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dna(n+1) Given, a=n∑r=01nCr=n∑r=01nCn−r Let, y=∑0≤i≤n∑0≤j≤n(inCi+jnCj) =∑0≤i≤n∑0≤j≤n(n−inCn−i+n−jnCn−j)[∵n∑r=0rnCr=n∑r=0n−rnCn−r] =n∑0≤i≤n∑0≤j≤n(1nCn−i+1nCn−j)−y=n∑0≤i≤n(n+1nCn−i+a)−y ⇒2y=n{a⋅(n+1)+a⋅(n+1)} ∴y=na(n+1)