wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (1+x)n=P0+P1x+P2x2+Pnxn and θ=nπ4, then what will be the value of the expression P0P3+P5+....2n2sinθ ?

Open in App
Solution

Given,
(1+x)n=P0+P1x+P2x2+Pnxn.............[1]

Putting x=i in eq.[1] :-
(1+i)n=P0+P1(i)+P2(i)2..........+Pn(i)n

(1+i)n=P0+iP1P2iP3+P4..........Pn(i)n..............................[2]

Now putting x=i in eq.[1] :-

(1i)n=P0+P1(i)P2+iP3+P4...............Pn(i)n

(1i)n=P0P1+P2.............+(1)nPnxn.............................[3]

Subtracting equations [3] from [2]:

(1+i)n(1i)n=2i[P1P3+P5.........]

[2ei(π/4)]n[2ei(π/4)]n=2i[P1P3+P5.........]

(2)n2ei(nπ/4)(2)n2ei(nπ/4)=2i[P1P3+P5.........]

(2)n2[cos n(π/4)+isin n(π/4)cos n(π/4)+sin n(π/4)]=2i[P1P3+P5.........]

(2)n2[2isin nπ4]=2i[P1P3+P5........]

Hence,
(2)n2[sin nπ4]=[P1P3+P5........]

So, [P1P3+P5........(2)n2[sin nπ4]]=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Order of a Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon