The correct option is A 12a20(1−a20)
Given
(1+x+x2)20=40∑r=0arxr ⋯(1)
Now, replacing x by 1x, we get
(1+1x+1x2)20=40∑r=0ar(1x)r⇒(1+x+x2)20=40∑r=0arx40−r ⋯(2)
Comparing equation (1) and (2), we get
a0=a40a1=a39
So, ar=a40−r
Replacing x by −1x in (1), we get
(1−1x+1x2)20=a0−a1x+a2x2−⋯+a40x40
⇒(1−x+x20)20=a0x40−a1x39+a2x38−⋯+a40
Clearly,
a20−a21+a22−⋯+a240
is the coefficient of x40 in (1+x+x2)20 (1−x+x2)20
= Coefficient of x40 in (1+x2+x4)20
=coefficient of y20 in (1+y+y2)20, where y=x2
= a20.
Hence, a20−a21+a22−⋯+a240=a20
⇒(a20−a21+a22−⋯−a219)+a220
+(−a221+a222−a223+⋯+a240)=a20
∵ar=a40−r, the above equation can be reduced to
⇒2(a20−a21+a22−⋯−a219)+a220=a20
⇒a20−a21+a22−⋯−a219=a202(1−a20)