wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If (1+x+x2)20=a0+a1x+a2x2++a40x40, then the value of a0+3a1+5a2++81a40 is:

A
161×320
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
41×340
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
41×320
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
161×340
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 41×320
Given
(1+x+x2)20=40r=0arxr (1)

Now, replacing x by 1x, we get
(1+1x+1x2)20=40r=0ar(1x)r(1+x+x2)20=40r=0arx40r (2)

Comparing equation (1) and (2), we get
a0=a40a1=a39
So, ar=a40r

Putting x=1 in equation (1), we get
320=a0+a1+a2++a40320=(a0+a1+a2++a19)+a20 +(a21+a22+a23++a40)320=2(a0+a1+a2++a19)+a20(ar=a40r)a0+a1+a2+++a19=12(910a20)

Also,
a0+3a1+5a2++81a40
=(a0+81a40)+(3a1+79a39)++
(39a19+43a21)+41a20
= 82(a0+a1+a2++a19)+41a20
=41(910a20)+41a20
=41×320

Alternate Solution:
(1+x+x2)20=a0+a1x+a2x2++a40x40
differentiating both the sides w.r.t. x
ddx(1+x+x2)20=a1+2a2x+3a3x2++40a40x3920(1+x+x2)19ddx(1+x+x2)=a1+2a2x+3a3x2++40a40x3920(1+2x)(1+x+x2)19=a1+2a2x+3a3x2++40a40x39
Now putting x=1, we get
a1+2a2+3a3++40a40=203319=20320
Now
a0+3a1+5a2++81a40=a0+a1+a2++a40+2(a1+2a2+3a3++40a40)=320+40320=41320

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of Coefficients of All Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon