The correct option is C 41×320
Given
(1+x+x2)20=40∑r=0arxr ⋯(1)
Now, replacing x by 1x, we get
(1+1x+1x2)20=40∑r=0ar(1x)r⇒(1+x+x2)20=40∑r=0arx40−r ⋯(2)
Comparing equation (1) and (2), we get
a0=a40a1=a39
So, ar=a40−r
Putting x=1 in equation (1), we get
320=a0+a1+a2+⋯+a40⇒320=(a0+a1+a2+⋯+a19)+a20 +(a21+a22+a23+⋯+a40)⇒320=2(a0+a1+a2+⋯+a19)+a20(∵ar=a40−r)∴a0+a1+a2+⋯++a19=12(910−a20)
Also,
a0+3a1+5a2+⋯+81a40
=(a0+81a40)+(3a1+79a39)+⋯+
(39a19+43a21)+41a20
= 82(a0+a1+a2+⋯+a19)+41a20
=41(910−a20)+41a20
=41×320
Alternate Solution:
(1+x+x2)20=a0+a1x+a2x2+⋯+a40x40
differentiating both the sides w.r.t. x
ddx(1+x+x2)20=a1+2a2x+3a3x2+⋯+40a40x39⇒20(1+x+x2)19ddx(1+x+x2)=a1+2a2x+3a3x2+⋯+40a40x39⇒20(1+2x)(1+x+x2)19=a1+2a2x+3a3x2+⋯+40a40x39
Now putting x=1, we get
a1+2a2+3a3+⋯+40a40=20⋅3⋅319=20⋅320
Now
a0+3a1+5a2+⋯+81a40=a0+a1+a2+⋯+a40+2(a1+2a2+3a3+⋯+40a40)=320+40⋅320=41⋅320