If (1−x+x2)n=a0+a1x+a2x2+...a2nx2n, find the value of a0+a2+a4+.....+a2n.
Putting x =1 and -1 in (1−x+x2)n=a0+a1x+a2x2+....+a2nx2n we get,
1=a0+a1+a2+...+a2n.....(i)
and
3n=a0−a1+a2−....+a2n....(ii)
Adding (i) and (ii), we get
3n+1=2(a0+a2+....+a2n)
Hence, the values of a0+a2=a4+....a2n is 3n+12