If (1+x+x2)n=a0+a1x+a2x2+...+a2nx2n, and E1=a0+a3+a6+..., E2=a1+a4+a7+..., E3=a2+a5+a8+..., then
A
E2=3n−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
E2=3n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
E3=3n−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
E3=3n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are AE2=3n−1 CE3=3n−1 (1+x+x2)n=a0+a1x+a2x2+a3x3+...+a2nx2n ⇒(1+x+x2)n=(a0+a3x3+a6x6+...) +x(a1+a4x3+a7x6+...)+x2(a2+a5x3+a8x6+...)
Putting x=1,ω,ω2 respectively, we get 3n=E1+E2+E3.......(1) 0=E1+ωE2+ω2E3......(2) 0=E1+ω2E2+ωE3......(3)