If (1−x+x2)n=a0+a1x+a2x2+....+a2nx2n where a0,a1,a2,...,a2n are in A.P. then prove that an=12n+1
Open in App
Solution
an=Tn+1 of A.P. = a0+nd Putting x = 1 in the given relation, we have a0+a1+a2+.....a2n=1n or S2n+1=2n+12[a0+a2n]=1 or a0+T2n+1=22n+1∵a2n=T2n+1 or a0+(a0+2nd)=22n+1 or 2(a0+2nd)=22n+1ora0+nd=12n+1 or Tn+1=a0+nd=an=12n+1