The correct option is A n⋅3n−13n−1−12
xn=1
⇒ xn−1=0
xn−1=(x−1)(x−z1)(x−z2)⋯(x−zn−1) where 1,z2,⋯,zn−1 are the n roots
Now, taking log both sides
log(xn−1)=log(x−1)+log(x−z1)+log(x−z2)+⋯+log(x−zn−1)
differentiating both side w.r.t x, we get
nxn−1xn−1=1x−1+1x−z1+1x−z2+⋯+1x−zn−1
Putting x=3, we get
13−z1+13−z2+⋯+13−zn−1=n⋅3n−13n−1−12
Alternate Solution:
1,z1,z2,...,zn−1 are the roots of zn−1=0
⇒(z−1)(z−z1)(z−z2)...(z−zn−1)=0
⇒1+z+z2+...+zn−1=0
Replace 13−z=y⇒z=3y−1y
1+3y−1y+(3y−1y)2+...+(3y−1y)n−1=0
Multiply by yn−1
⇒yn−1+yn−2(3y−1)+yn−3(3y−1)2+...+(3y−1)n−1=0
⇒yn−1(1+3+32+...+3n−1)− yn−2(1+2⋅3+3⋅32+4⋅33+...+(n−1)3n−2) +...+(−1)n−1=0
We know that, sum of roots =−ba
∴13−z1+13−z2+13−z3+...+13−zn−1=1+2⋅3+3⋅32+4⋅33+...+(n−1)3n−21+3+32+...+3n−1
=n−1∑r=1r⋅3r−1n∑r=13r−1
Let S=n−1∑r=1r⋅3r−1
S=1+2⋅3+3⋅32+4⋅33+...+(n−1)3n−2
3S= 3+2⋅32+3⋅33+...+(n−2)3n−2+(n−1)3n−1
Subtracting above equations, we get
−2S=3n−1−12−(n−1)3n−1
⇒S=n⋅3n−12−3n−14
S′=n∑r=13r−1=3n−12
Required Answer=
=n⋅3n−13n−1−12