The correct option is B 100
(10)9+2(11)1(10)8+3(11)2(10)7+⋯+10(11)9=k(10)9
Dividing by (10)9 on both sides, we get
1+2(1110)+3(1110)2+⋯+10(1110)9=k ⋯(1)
Multiplying eqn (1) by 1110, we get
1110+2(1110)2+3(1110)3+⋯+10(1110)10=(1110)k ⋯(2)
Subtracting eqn (2) from eqn (1), we get
k−(1110)k=1+1110+(1110)2+(1110)3+⋯+(1110)9−10(1110)10
⇒k(1−1110)=(1110)10−11110−1−10(1110)10
⇒−k10=10(1110)10−10−10(1110)10
⇒k=100