The correct option is C 100
Given
k.109=109+2(11)1(10)8+3(11)2(10)7+……+10(11)9
⇒k=1+2(1110)+3(1110)2+……+10(1110)9……(i)
(1110)k=1(1110)+2(1110)9+10(1110)10……(ii)
On subtracting Eq. (ii) from Eq. (i), we get
k(1−1110)=1+1110+(1110)2+……+(1110)9−10(1110)10
⇒k(10−1110)=1[(1110)10−1](1110−1)−10(1110)10
[∵In GP, sum of n terms=a(rn−1)r−1, when r>1]
⇒−k=10[10(1110)10−10−10(1110)10]
∴k=100