10sin4α+15cos4α=6
10(sin4α+cos4α)+5cos4α=6
10((sin2α+cos2α)2−2sin2αcos2α))±6−5cos4α
10(1−2sin2αcos2α)=6−5cos4α
4−20sin2αcos2α=−5cos4α
4sec4α−20tan2α=−5
20tan2α−4sec4α−5=0
20tan2α−4(1+tan2α)2−5=0
20tan2α−4(1+tan4α+2tan2α)−5=0
(tan2α−3tan2α+94=0
(tan2α−32)2=0
tan2α=32
tanα=√3√2
Now,1125(27cosec6α+8sec6α)Cosesα=√5√3=√53
=1125[(3cosec2α)3+(2sec2α)3]secα=√(52)
=1125[(3×53)3+(2×52)3]
1125(125+125)
1125(250)
2Ans.