Given that, 10sin4α+15cos4α=6 ……. (1)
We know that,
cos2α=1−sin2α
Put in equation (1) and we get,
10sin4α+15(1−sin2α)2=6
⇒10sin4α+15(1+sin4α−2sin2α)=6
⇒10sin4α+15+15sin4α−30sin2α=6
⇒25sin4α−30sin2α=6−15
⇒25sin4α−30sin2α+9=0
Let x=sinα become a quadratic equation.
We get,
⇒25x4−30x2+9=0
⇒(5x2−3)2=0
⇒5x2−3=0
⇒x2=35
⇒x=±√35
Now, x=sinα=±√35
So, cosecα=±√53
Then, secα=±√52 (By Pythagoras theorem)
Now,
Find the value of
1125(27cosec6α+8sec6α)
=1125⎛⎝27×(√53)6+8×(√52)6⎞⎠
=1125(27×(53)3+8×(52)3)
=1125(27×12527+8×1258)
=1125(125+125)
=250125
=2
Hence, this is the answer.