If 10sin4α+15cos4α=6 then find the value of 1125(27cosec6α+8sec6α).
10sin4α+15cos4α=6
10(sin4α+cos4α)+5cos4α=6
10((sin2α+cos2α)2−2sin2αcos2α))±6−5cos4α
10(1−2sin2αcos2α)=6−5cos4α
4−20sin2αcos2α=−5cos4α
4sec4α−20tan2α=−5
20tan2α−4sec4α−5=0.
20tan2α−4(1+tan2α)2−5=0.
20tan2α−4(1+tan4α+2tan2α)−5=0.
tan4α−3tan2α+9/4=0
(tan2α−3/2)2=0
tan2α=3/2
Now1125(27cosec6α+8sec6α)
=1125[(3cosec2α)3+(2sec2α)3]
=1125[(3×5/3)3+(2×5/2)3]
=1125[125+125]
=1125(250)
=2Ans.