If 10 times the 10th term of an A.P. is equal to 15 times the 15th term, show that 25th term of the A.P. is zero.
Given:
10a10=15a15
⇒10[a+(10−1)d]=15[a+(15−1)d]⇒(10a+90d)=15(a+14d)⇒10a+90d=15a+210d⇒0=5a+120d⇒0=a+24d⇒a=−24d……(i)
To show:
a25=0
⇒LHS:a25=a+(25−1)d=a+24d=−24d+24d [From (i)]=0=RHS
Hence proved.