The correct option is B 11
We know that nCr=n!r!(n−r)!
Given, 11[n−1C3]=24[nC2]
=>11×(n−1)!3!(n−1−3)!=24×n!2!(n−2)!
=>11×(n−1)!3!(n−4)!=24×n!2!(n−2)!
=>11×(n−1)!3×2!(n−4)!=24×n×(n−1)!2!(n−2)×(n−3)×(n−4)!
=.>113=24×n(n−2)×(n−3)
=>1124×3=n(n−2)×(n−3)
118×3×3=n(n−2)×(n−3)
=>119×8=n(n−2)×(n−3)
On comparing corresponding terms, we see n=11