If 1³+2³+.......+9³=2025, then (0.11)³+(0.22)³+......+(0.99)³will be-
0.2695
2.695
3.695
0.3695
Given that 1³+2³+.......+9³=2025………(1)
We have to find (0.11)³+(0.22)³+......+(0.99)³…….(2)
We will simplify (2) and get
=(0.11)³+(0.22)³+......+(0.99)³
=111003+221003+.......+991003=11100313+23+.......93
=111003×2025 [Putting the value according to equation (1)]
=13311000000×2025=2.695
Hence, B is the correct option