If 15 sin4α + 10 cos4α = 6 then the value of 8 cosec6α - 27 sec6α is
15 sin4α + 10 cos4α = 6 How to proceed?
We know the identity sin2α + cos2α = 1
sec2α = 1+ tan2α
cosec2α = 1+ cot2α
Can we use these identities here?
We can write 15 sin4α = 5 sin4α + 10 sin4α
5 sin4α + 10 sin4α + 10 cos4α = 6
5 sin4α + 10 (sin4α + cos4α) = 6 -----------(1)
(sin2α+cos2α)2 = sin4α + cos4α + 2 sin2α cos2α
1 - 2 sin2α cos2α = sin4α + cos4α
Substituting the value of sin4α + cos4α in equation 1
So, 5 sin4α + 10 (1-2 sin2α cos2α) = 6
5 sin4α + 10 - 20 sin2α (1 - sin2α) = 6
5 sin4α + 4 - 20 sin2α + 20 sin2α + 20 sin4α = 0
25sin4α - 20 sin2α + 4 = 0
→ Let sin2α = x
25 x2- 20x + 4 = 0 Quadratic equation
25 x2 - 10x + 10x + 4 = 0
5x(5x - 2) - 2 (5x - 2) = 0
(5x−2)2 = 0
x = 25
sin2α = 25
sinα= √2√5
In right angle triangle
From trigonometric ratio
So, sec α = √5√2
cosec α = √5√2
So, 8 cosec6α - 27 sec6α
8(√5√2)6 - 27(√5√2)6
= 8 × 5323 - 27 × 5333
= 8 × 1258 - 27 × 12527
= 125 - 125 = 0