The correct option is D 1
We know that,
1690=7×241+3,2608=7×372+4
Now, let
A=16902608+26081690=(7×241+3)2608+(7×372+4)1690=7k1+32608+7k2+41690, k1,k2∈N=7k+32608+41690, k∈N
B=32608+41690
Remainder of A and B are same, so
B=3×33×869+4×43×563=3×27869+4×64563=3(28−1)869+4(63+1)563=3(28k3−1)+4(63k4+1), k3,k4∈Z=7m+1, m∈Z
Hence, the remainder is 1.