Let A=(2,0),B=(0,1),C=(4,5),D=(0,C)
If
□ABCD is a cyclic quadrilateral, product of diagonals has to be equal to the sum of the product of the opposite sides.
∴AC.BD=AB.CD+BC.AD
∴√(2−4)2+(0−5)2.√0+(1−C)2= √(2−0)2+(0−1)2.√(4−0)2+(5−C)2+√(0−4)2+(1−5)2.√(2−0)2+(0−C)2
Squaring both sides, we have
29×(C−1)2=5×(16+25+C2−10C)+2√(5)(16+25−10C+C2)(32)(C2+4)+32×(C2+4)
∴29C2−58C+29−32C2−128−205−5C2+50C=2√(160)(C2+4)(41−10C+C2)
∴−8C2−8C−304=2√160(C2+4)(41−10C+C2)
∴−(C2+C+38)=√10(C2+4)(41−10C+C2)
Squaring both sides, we have
C4+C2+76C+1444+2C3+76C2=10(C4−10C3+41C2+164−40C+4C2)
∴9C4−102C3+373C2−476C+196=0
By observation, we can conclude that C=1
∴(C−1)(9C3−93C2+280C−196)=0
Again, (C−1)2(9C2−84C+196)=0
∴(C−1)2(3C−14)2=0
∴C=143