The correct option is
D (−3,−7),(7,9),(1,1)Let
A(x1,y1),B(x2,y2),C(x3,y3) be the vertices of
△ABCLet D(2,1) , F(-1,-3) and E(4,5) be the mid points of AB,AC and BC.
D and F are mid points pf ABC and AC
∴DF∥BE
E and F are mid points pf BC and Ac
∴EF∥BD
∴ DBEF is a parallelogram.
The diagonals of a parallelogram bisect each other i.e, both diagonals have same mid point
i.e, Midpoint BF=Midpoint of DE
(x2+(−1)2,y2+(−3)2)=(2+42,1+52)∴x2+(−1)2=2+42∴x2=7
Similarly y2+(−3)2=1+52∴y2=9i.e,(x2,y2)=(7,9)
D is the mid point of AB
D=(2,1)=(x1+x22,y1+y22)x1+72=2∴x1=−3i.e,(x1,y1)=(−3,−7)y1+92=1∴y1=−7
F is the midpoint of AC
F=(−1,−3)=(x1+x32,y1+y32)−1=−3+x32∴x3=1i.e,(x3,y3)=(1,1)−3=−7+y32∴y3=1
∴ The vertices of triangle are =(−3,−7),(7,9),(1,1)