If 22x+2−a⋅2x+2+5−4a≥0 has atleast one real solution, Then a ϵ
(−∞,1]
22x+2−a⋅2x+2+5−4a≥0Let t=2x∴ 4t2−4at+5−4a≥04t2+5≥4a+4at4t2+5t+1≥4a ⇒4a≤4t2+5t+1
∀ t such that 4a≤4t2+5t+1⇒4a≤min4t2+5t+1
Let f(t)=4t2+5t+1⇒f′(t)=(t+1)(8t)−(4t2+5)(t+1)2
f′(t)=8t2+8t−4t2−5(t+1)2∴ f′(t)=0 ⇒ 4t2+8t−5=0∴ t=12, −52 (rejected as t>0)∴ f(12)=4×14+512+1=4Also as t→0⇒f(t)→5∴ 4a≤4=1 a≤1