Let
(2.381)x=(0.2831)y=10z=k
∴(2.381)x=k
xlog(2.381)=logk
x=logklog(2.381)
Similarly,
y=logklog(0.2381),z=logklog10
We have,
⇒−1x+1y+1z
⇒−1logklog(2.381)+1logklog(0.2381)+1logklog10
⇒−log(2.381)logk+log(0.2381)logk+log10logk
⇒−log(2.381)+log(0.2381)+log10logk
⇒−log(2.381)+log(2.381)logk
⇒0
Hence, this is the answer.