If (29!)+ (23!7!) +15!5!=2ab!, where a,b∈N, then the ordered pair (a,b) is
(9,10)
(10,9)
(7,10)
(10,7)
Explanation for the correct options:
Finding the value:
Given Data:
(29!)+ (23!7!) +15!5!=2ab!
⇒17![29×8+26+7×65!]=2ab!
⇒ 17!×128180=2ab!
⇒ 277!×9×10×2=2ab!
Multiply numerator and denominator by 23
⇒ 26×2310×9×23×7!=2ab!
⇒ 2910!=2ab!
So, a=9and b=10
The ordered pair (a,b) is (9,10).
Hence Option (A) is correct.
Let A = {1, 2, 3} and R={(a,b):|a2−b2|≤5,a,bϵA}. Then write R as set of ordered pairs.
Multiply:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)