If 2cos2x<2−3cosx and ,x2<4x+12,then x belongs to
2cos2x<2−3cox⇒2cos2x+3cosx−2<0(2cosx−1)(cosx+2)<0cosxϵ(−2,12)⇒cosxϵ(−1,12)As−1≤cosx≤1∴xϵ(2mπ+(−π3),2mπ+π3)−−(1)
And x2<4x+12⇒x2−4x−12<0⇒(x+2)(x−6)<0⇒xϵ(−2,6)−−(2)
Taking intersection of (1) and (2), we get
xϵ(−2,−π3)∪(π3,5π3)