wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 2cosA=x+1x,2cosβ=y+1y then show that 2 cos (A-B)=xy+yx.

Open in App
Solution

Given,
2cosA=x+1x and 2cosB=y+1y
sinA=1cos2A=114(x+1x)2
sinA=114(x2+1x2+2)=14(x2+1x2)+12=14(x2+1x22)
sinA=14(x12)2=12(x1x)=i2(x1x) ( 1=i)
2sinA=i(x1x)
Similarly, 2sinB=i(y1y)
Now,
cos(AB)=cosA.cosB+sinA.sinB
cos(AB)=14(x+1x)(y+1y)+i24(x1x)(y1y)
cos(AB)=14(xy+1xy+xy+yx)14(xy+1xyxyyx)
cos(AB)=14[xy+1xy+xy+yxxy1xy+xy+yx]
2cos(AB)=xy+yx
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon