The correct option is C ±2isin(10α−12β)
2cosα=x+1x
⇒x2−2(cosα)x+1=0
⇒x=2cosα±√4cos2α−42
⇒x=cosα±isinα
⇒x=e±iα
Similarly y=e±iβ
x10y12−y12x10
Case 1: when x=eiα, then
x10y12−y12x10=e10iαe±12iβ−e±12iβe10iα=ei(10α∓12β)−e−i(10α∓12β)=2isin(10α∓12β)=2isin(10α+12β),2isin(10α−12β)
Case 2: when x=e−iα, then
x10y12−y12x10=e−10iαe±12iβ−e±12iβe−10iα=ei(−10α∓12β)−e−i(−10α∓12β)=2isin(−10α∓12β)=2isin(−10α∓12β)=−2isin(10α+12β),−2isin(10α−12β)