wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 2cosΘ+sinΘ=1,thencosΘ+6sinΘ=?

Open in App
Solution

We have,

2cosθ+sinθ=1

2cosθ=1sinθ

Squaring both side and we get,

(2cosθ)2=(1sinθ)2

4cos2θ=12+sin2θ2sinθ

4(1sin2θ)=1+sin2θ2sinθ

44sin2θ=1+sin2θ2sinθ

4sin2θsin2θ+2sinθ+41=0

5sin2θ+2sinθ+3=0

5sin2θ2sinθ3=0

5sin2θ(53)sinθ3=0

5sin2θ5sinθ+3sinθ3=0

5sinθ(sinθ1)+3(sinθ1)=0

(sinθ1)(5sinθ+3)=0

sinθ1=0,5sinθ=3

sinθ=1,sinθ=35

sinθ=sinπ2,sinθ=35

θ=π2

Put the value of θ in equation (1) and we get,

cosθ+6sinθ=?

=cosπ2+6sinπ2

=0+6×1

=6

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon