We have,
2cosθ+sinθ=1
2cosθ=1−sinθ
Squaring both side and we get,
(2cosθ)2=(1−sinθ)2
⇒4cos2θ=12+sin2θ−2sinθ
⇒4(1−sin2θ)=1+sin2θ−2sinθ
⇒4−4sin2θ=1+sin2θ−2sinθ
⇒−4sin2θ−sin2θ+2sinθ+4−1=0
⇒−5sin2θ+2sinθ+3=0
⇒5sin2θ−2sinθ−3=0
⇒5sin2θ−(5−3)sinθ−3=0
⇒5sin2θ−5sinθ+3sinθ−3=0
⇒5sinθ(sinθ−1)+3(sinθ−1)=0
⇒(sinθ−1)(5sinθ+3)=0
⇒sinθ−1=0,5sinθ=−3
⇒sinθ=1,sinθ=−35
⇒sinθ=sinπ2,sinθ=−35
⇒θ=π2
Put the value of θ in equation (1) and we get,
cosθ+6sinθ=?
=cosπ2+6sinπ2
=0+6×1
=6
Hence, this is the answer.