The correct options are
A xn+1xn=2cos(nθ)
B xy+yx=2cos(θ−ϕ)
C xy+1xy=2cos(θ+ϕ)
Considering x=cosθ+isinθ
=eiθ
Therefore
¯¯¯x=1x=e−iθ
x+1x=2cosθ
xn=einθ=cosnθ+isinnθ
1xn=e−inθ
=cosnθ−isinnθ
Hence xn+1xn
=2cosnθ
Similarly considering y=cosϕ+isinϕ
=eiϕ
Therefore
¯¯¯y=1y=e−iϕ
y+1y=2cosϕ
yn=einϕ=cosnϕ+isinnϕ
1yn=e−inϕ
=cosnϕ−isinnϕ
Hence yn+1yn
=2cosnϕ
xy+1xy
ei(θ+ϕ)+e−i(θ+ϕ)
=2cos(θ+ϕ)
xy−1+yx−1
=ei(θ−ϕ)+e−i(θ−ϕ)
=2cos(θ−ϕ)
Hence, options 'B', 'C' and 'D' are correct.