If (2)m+1×25=43 the value of m is
Given, (2)m+1×25=43 ⇒ (2)m+1×25=((2)2)3
∵am×an= a(m+n) ⇒ (2)m+1+5=(22)3
∵(am)n= (a)(m×n)
⇒ (2)m+1+5=(2)6 Equating the powers.
m+1+5=6
⇒m=0.
If (2)m+1×25=4−2 the value of m is
If (2)m+1×25=4−2, the value of m is
The value of m which satisfies (2)m+1×25=4−2 is: