The correct option is B −43
2sin−1x0+tan−1x0=5π√−x20+2x0+15
⇒2sin−1x0+tan−1x0=5π√16−(x0−1)2
Clearly, x0∈[−1,1]
R.H.S.=5π√16−(x0−1)2
R.H.S.≥5π4
L.H.S.=2sin−1x0+tan−1x0
L.H.S.≤5π4
So, the equation is true only when L.H.S.=R.H.S.=5π4
∴x0=1 is the only solution.
Now, y=2xy+x ⋯(1)
At x=1,y=2y+1
⇒y2+y−2=0
⇒y=1,−2
From (1),
y2+xy=2x
Differentiating w.r.t. x, we get
2ydydx+xdydx+y=2
⇒dydx=2−y2y+x
At (1,1)
dydx∣∣∣(1,1)=2−12+1=13
At (1,−2)
dydx∣∣∣(1,−2)=2+2−4+1=−43