If 2sin−1x+cos−1x=2π3, then x =
0
2sin−1x+cos−1x=2π3⇒sin−1x+sin−1x+cos−1x=2π3⇒π2+sin−1x=2π3⇒sin−1x=π6⇒x=12
If alpha≤2sin−1x+cos−1x≤β, then
if sin−1x+sin−1y=2π3 and cos−1x−cos−1y=π6, then x=