If 2sin2θ+3cosθ+1=0, then the value of θ is
π6
2π3
5π6
π
Explanation for the correct option:
Step 1. Find the value of θ:
Given,
2sin2θ+3cosθ+1=0
⇒2(1–cos2θ)+3cosθ+1=0 ∵sin2θ+cos2θ=1
⇒ 2–2cos2θ+3cosθ+1=0
⇒ 2cos2θ–3cosθ–3=0
It makes a quadratic equation in cos θ
Step 2. Apply quadratic formula:
cosθ=[3±(3+24)]4=(3±33)4 ∵x=-b±b2-4ac2a
⇒cosθ=(3+33)4,(3–33)4
⇒cosθ=(43)4,(-23)4
⇒cosθ=3,-32
As We know that cosθ=3 is not possible.
∵cosθ=-32
∴θ=5π6
Hence, Option ‘C’ is Correct.