If 2sinθ+tanθ=0, then the general values of θ are
2nπ±π3
nπ,2nπ±2π3
nπ,2nπ±π3
nπ,nπ+2π3
Explanation for the correct option:
Find the value of θ:
Given,
2sinθ+tanθ=0
⇒ 2sinθ+sinθcosθ=0
⇒2sinθcosθ+sinθ=0
⇒ sinθ(2cosθ+1)=0
⇒sinθ=0,2cosθ+1=0
⇒sinθ=0,cosθ=-1/2
⇒θ=nπ,cosθ=cos2π3
∴θ=nπ,2nπ±2π3
Hence, Option ‘B’ is Correct.