We have,
2sinx=1
sinx=12
sinx=sin30o
x=30o
If √2cosy=1
cosy=1√2
cosy=cos45o
y=45o
Then, value of
tanx+tanycosx−cosy
=tan30o+tan45ocos30o−cos45o
=1√3+1√32−1√2
=1+√3√3√6−22√2
=2√2(1+√3)√3(√6−2)
=2√2(1+√3)√2√3(√3−√2)
=2(1+√3)√3(√3−√2)
On rationalize and we get,
=2(1+√3)√3(√3−√2)×(√3+√2)(√3+√2)×√3√3
=2√3(1+√3)(√3+√2)3[(√3)2−(√2)2]
=2√3(1+√3)(√3+√2)3[3−2]
=2√3(1+√3)(√3+√2)3.