wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 2sinx=1,π2<x<π and 2cosy=1, 3π2<y<2π, find the value of tanx+tanycosxcosy.

Open in App
Solution

We have,

2sinx=1

sinx=12

sinx=sin30o

x=30o

If 2cosy=1

cosy=12

cosy=cos45o

y=45o

Then, value of

tanx+tanycosxcosy

=tan30o+tan45ocos30ocos45o

=13+13212

=1+336222

=22(1+3)3(62)

=22(1+3)23(32)

=2(1+3)3(32)

On rationalize and we get,

=2(1+3)3(32)×(3+2)(3+2)×33

=23(1+3)(3+2)3[(3)2(2)2]

=23(1+3)(3+2)3[32]

=23(1+3)(3+2)3.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon