(2+√3)n = I + f.
or I + f = 2n+nC12n−1√3+nC22n−2(√3)3+nC32n−3(√3)3+⋯
Now, 0 < 2 - √3 < 1. ∴0(2−√3)n<1.
Let (2−√3)n = f' where 0 < f' < 1.
∴f′=2n−nC12n−1√3+nC22n−2(√3)2nC32n−3(3√3)3+⋯
Adding (1) and (2),
I + f + f' = 2[2n+nC22n−2.3+.....]
or I + f + f' = even integer.
Now 0 < f < 1 and 0 < f' < 1.
∴ 0 < f + f' < 2.
Hence from (3) we conclude that f + f' is an integer between 0 and 2.
∴ f + f' = 1 ∴ f' = 1 - f.
From (3) and (4) we get I + 1 = even integer.
∴ I is an odd integer.
Now I + f = (2+√3)n, f' = 1 - f = (2−√3)n
∴ (I + f) (1 - f) = [(2 + √3) (2 - √3)]n=(4−3)n=1.
∴ (I + f) (1 - f) = 1