The correct option is D 3500
Given: 23√x+33√y=30
⇒23√x=3(10−3√y) .......(i)
For 3√y to be a positive integer, the possible values of y are only 8, 64, 216 and 512.
The perfect cube of odd numbers are neglected since the expression on left side of (i) is even.
And for perfect cube of even numbers which are greater than 512, 3√y will be greater than 10, therefore, it will result in negative values of x. Thus, they are rejected. Substituting y = 8 in (i), we get
23√x=3(10−3√8)=3(10−2)
⇒3√x=242=12
⇒x=(12)3=1728
Substituting y = 64 in (i), we get
23√x=3(10−3√64)
⇒3√x=3(10−4)2=3×62=3×3=9
⇒x=(9)3=729
Substituting y = 216 in (i), we get
23√x=3(10−3√216)=3(10−6)
⇒23√x=3×4
⇒3√x=6
⇒x=(6)3=216
Substituting y = 512 in (i), we get
23√x=3(10−3√512)
⇒23√x=3(10−8)
⇒3√x=3×22=3
⇒x=(3)3=9
∴ Required sum = (8 + 64 + 216 + 512) + (1728 + 729 + 216 + 27)
= 3500
Hence, the correct answer is option (d).