(2+√3)n=I+fI+f=2n+nC1⋅2n−1⋅√3+nC2⋅2n−2⋅(√3)2+⋯ −(1)
Now, 0<(2−√3)<1
Let (2−√3)n=f′
∴f′=2n−nC1⋅2n−1⋅√3+nC2⋅2n−2⋅(√3)2−⋯ −(2)
Adding (1) and (2)
I+f+f′=2(2n+nC2⋅2n−2⋅(√3)2+⋯)
∴I+f+f′=2m, m∈N −(3)
Now 0<f<1; 0<f′<1
∴0<f+f′<2
From (3), f+f′ will be an integer between 0 and 2
∴f+f′=1f′=1−f... −(4)
∴(I+f)(1−f)=(2+√3)n(2−√3)n=1