If 2 tan α=3 tan β, prove that tan(α−β)=sin 2β5−cos2β
Have, a tan α=3 tan β
⇒ tan αtan β=32
Let tan α=3K and tan β=2K
Now, tan(α−β)=tan α−tan β1+tan α. tan β
=3K−2K1+3K.2K=K1+6K2 . . .(A)
Also,
sin 2β5−cos 2β=2 tan β1+tan2β5−(1−tan2β1+tan2β)=2.2K1+4K25−(1−4K21+4K2)=4K5+20K2−1+4K2
=4K4+24K2=K1+6K2 . . . (B)
from (A) and (B)
tan(α−β)=sin 2β5−cos2β