wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 2 tan α=3 tan β, prove that tan(αβ)=sin 2β5cos2β

Open in App
Solution

Have, a tan α=3 tan β

tan αtan β=32

Let tan α=3K and tan β=2K

Now, tan(αβ)=tan αtan β1+tan α. tan β

=3K2K1+3K.2K=K1+6K2 . . .(A)

Also,

sin 2β5cos 2β=2 tan β1+tan2β5(1tan2β1+tan2β)=2.2K1+4K25(14K21+4K2)=4K5+20K21+4K2
=4K4+24K2=K1+6K2 . . . (B)

from (A) and (B)

tan(αβ)=sin 2β5cos2β


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon