If 2 tanα2=tanβ2, prove that cos α=3+5cos β5+3 cos β. A.so, determine the value of cos α when β=60∘.
Or
If a sin θ=b sin(θ+2π3)=c sin(θ+4π3), find the value of ab + bc + ca.
We have, RHS=3+5 cos β5+3 cos β
= 3+5(1−tan2 β/21+tan2 β/2)5+3(1−tan2 β/21+tan2 β/2) [∵ cos β=1−tan2 β/21+tan2 β/2]
= 3+3tan2 β/2+5−5tan2 β/25+5tan2 β/2+3−3tan2 β/2
= 8−2tan2 β/28+2tan2 β/2=8−2(4tan2 α/2)8+2(4tan2 α/2)
[∵ 2tan α/2=tan β/2]
= 8−8tan2 α/28+8tan2 α/2
= 1−tan2 α/21+tan2 α/2=cos α=LHS
Hence proved.
Now, when β=60∘, then
cos α=3+5 cos 60∘5+3 cos 60∘=3+5×1/25+3×1/2
= 6+510+3=1113
Or
We have, a sin θ=b sin(θ+2π3)=c sin(θ+4π3)=k (say)
Then, sin θ=ka,sin(θ+2π3)=kb
and sin(θ+4π3)=kc
Now, ab+bc+ca=abc(1a+1b+1c)
= abck[sin θ+sin(θ+2π3)+sin(θ+4π3)]
= abck[sin θ+sin θ cos2π3+cos θ sin2π3+sin θ cos4π3+cos θ sin4π3]
= [∵ sin(A+B)=sinA cosB+cosA sinB]
= abck(sin θ−12sin θ+√32cos θ−12sin θ−√32cos θ)
[∵ cos2π3=cos(π−π3)=−cosπ3=−12′ sin2π3=sin(π−π3)=sinπ3=√32,cos4π3=cos(π+π3)=−cosπ3=−12′ sin4π3=sin(π+π3)=−sinπ3=−√32]
= abck.0=0
Hence, the value of ab + bc + ca is 0.