wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 2 tanα2=tanβ2, prove that cos α=3+5cos β5+3 cos β. A.so, determine the value of cos α when β=60.

Or

If a sin θ=b sin(θ+2π3)=c sin(θ+4π3), find the value of ab + bc + ca.

Open in App
Solution

We have, RHS=3+5 cos β5+3 cos β

= 3+5(1tan2 β/21+tan2 β/2)5+3(1tan2 β/21+tan2 β/2) [ cos β=1tan2 β/21+tan2 β/2]

= 3+3tan2 β/2+55tan2 β/25+5tan2 β/2+33tan2 β/2

= 82tan2 β/28+2tan2 β/2=82(4tan2 α/2)8+2(4tan2 α/2)

[ 2tan α/2=tan β/2]

= 88tan2 α/28+8tan2 α/2

= 1tan2 α/21+tan2 α/2=cos α=LHS

Hence proved.

Now, when β=60, then

cos α=3+5 cos 605+3 cos 60=3+5×1/25+3×1/2

= 6+510+3=1113

Or

We have, a sin θ=b sin(θ+2π3)=c sin(θ+4π3)=k (say)

Then, sin θ=ka,sin(θ+2π3)=kb

and sin(θ+4π3)=kc

Now, ab+bc+ca=abc(1a+1b+1c)

= abck[sin θ+sin(θ+2π3)+sin(θ+4π3)]

= abck[sin θ+sin θ cos2π3+cos θ sin2π3+sin θ cos4π3+cos θ sin4π3]

= [ sin(A+B)=sinA cosB+cosA sinB]

= abck(sin θ12sin θ+32cos θ12sin θ32cos θ)

[ cos2π3=cos(ππ3)=cosπ3=12 sin2π3=sin(ππ3)=sinπ3=32,cos4π3=cos(π+π3)=cosπ3=12 sin4π3=sin(π+π3)=sinπ3=32]

= abck.0=0

Hence, the value of ab + bc + ca is 0.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon