wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 2 tan α2=tan β2, prove that cos α=3+5 cos β5+3 cos β.

Open in App
Solution

We have,

2 tan=α2=tanβ2 tanα2tanβ2=12

Let tanα2=H and tan β2=2K,

Then,

cosα=1tan2α21+tan2α2=1K21+K2 . . . (A0

Also,

3+5 cos β5+3 cos β=3+51tan2β21+tan2β25+31tan2β21+tan2β2

=3+5(14K21+4K2)5+3(14K21+4K2)
=88K28+8K2=1K21+K2 . . . (B)

form (A) and (B)

cos α=3+5 cos β5+3 cos β


flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon