If 2 tan α2=tan β2, prove that cos α=3+5 cos β5+3 cos β.
We have,
2 tan=α2=tanβ2⇒ tanα2tanβ2=12
Let tanα2=H and tan β2=2K,
Then,
cosα=1−tan2α21+tan2α2=1−K21+K2 . . . (A0
Also,
3+5 cos β5+3 cos β=3+5⎛⎜⎝1−tan2β21+tan2β2⎞⎟⎠5+3⎛⎜⎝1−tan2β21+tan2β2⎞⎟⎠
=3+5(1−4K21+4K2)5+3(1−4K21+4K2)
=8−8K28+8K2=1−K21+K2 . . . (B)
form (A) and (B)
cos α=3+5 cos β5+3 cos β