Let
2x=3y=12z=k
∴2x=k
xlog2=logk
x=logklog2
Similarly,
y=logklog3,z=logklog12
Since,
⇒z(x+2y)xy
⇒logklog12(logklog2+2logklog3)logklog2×logklog3
⇒1log12(1log2+2log3)1log2×1log3
⇒1log12(log3+2log2)
⇒1log12(log3+log4)(∵nlogm=logmn)
⇒1log12(log12)(∵loga+logb=logab)
⇒1
Hence, this is the answer.