If 2x=3y=6−z, find the value of 1x+1y+1z.
Find the value of the required expression.
Let, 2x=3y=6−z=ksay
⇒2=k1x,3=k1y,6=k−1z
∵6=2×3=k1x×k1y=k1x+1yUsingaboveresults⇒k−1z=k1x+1y⇒−1z=1x+1y⇒1x+1y+1z=0
Hence, the value of 1x+1y+1z is 0.
Determine whether the following numbers are in proportion or not:
13,14,16,17
If (2.3)x=(0.23)y=1000 then find the value of 1x-1y.