The correct option is A 3
Given: (2x–4)3+(4x–2)3=(4x+2x–6)3
Using the identity (x+y)3=x3+y3+3xy(x+y):
(4x+2x–6)3=[(2x–4)+(4x–2)]3=(2x–4)3+(4x–2)3+3(2x–4)(4x–2)(2x–4+4x–2)
⇒(2x+4x–6)3=(4x+2x–6)3+3(2x–4)(4x–2)(2x+4x–6) (Given)
⇒3(2x–4)(4x–2)(2x+4x–6)=0
⇒2x−4=0,4x−2=0 or 2x+4x−6=0
Consider 2x–4=0.
∴2x=4
⇒2x=22
⇒x=2
Now, consider 4x–2=0.
∴4x=2
⇒22x=22
⇒2x=1
⇒x=12
Now, consider 2x+4x–6=0.
⇒2x+22x−6=0
⇒22x+(3−2)2x−6=0
⇒(2x)2+3×2x−2×2x−6=0
⇒2x(2x+3)−2(2x+3)=0
⇒(2x−2)(2x+3)=0
⇒2x–2=0 or 2x+3=0
⇒2x=2 or 2x=–3
Since the value of 2x cannot be negative.
⇒2x=2
⇒2x=21
⇒x=1
Thus, there are three possible values of x for the given expression.
Hence, the correct answer is option (1).