If 2(y−a) is the H.M. between y−x and y−z then x−a,y−a,z−a are in?
We know that if x, y are in HP then HM=Sxy
x+y
f(y−a)=x(y−x)(y−z)2y−(x+z)
2y2−2ay−x4y+ax−zy+az=y2−yz−xy+xz
y2−2ay+ax=z(x−a)
add and subtract a from L⋅H⋅S
y2−2ay+a2+ax−a2=z(x−a)
(y−a)2+a(x−a)=z(x−a)
(y−a)2=(z−a)(x−a)
⇒x−a,y−a,z−a are in GP
Option (b)