The correct option is C 2
Given that
(21.4)a=(0.00214)b=100
(21.4)a=100,(0.00214)b=100
Applying log on both the sides, we get
a=log21.4100,b=log0.00214100
∴1a−1b=1log21.4100−1log0.00214100, ∵ [logab=1logba]
⇒1a−1b=log10021.4−log1000.00214
∴1a−1b=log10021.40.00214=log1001002=2log100100=2,
∵ [loga−logb=logab]