The correct option is
C (2+√3,5)Let the coordinate of 6 be
(x,y) in an equilateral triangle all sides are of equal length.
⇒AB=AC=BC
Here AB=√(2−2)2+(6−4)2=√22=2units
and AC=√(2−x)2+(4−y)2=2units........(1)
BC=√(2−x)2+(6−y)2=2units.......(2)
also, AC=BC
⇒√(2−x)2+(4−y)2=√(2−x)2+(6−y)2..........(4)
squaring both sides we get,
⇒(2−x)2+(4−y)2=(2−x)2+(6−y)2
⇒16+y2−8y=36+y2−12y
⇒4y=20
⇒y=5......(5)
Now, putting y=5 in equation (1) we have,
⇒√(2−x)2+12=2
squaring both sides we have,
⇒(2−x)2+1=4
⇒(2−x)2=3
⇒2−x=±√3
⇒x=2±√3
∴ the possible coordinates of x are (2−√3,5) and (2+√3,5)
Hence, the answer is (2+√3,5).