The correct option is A (0,1)
Given, 2a+3b+6c=0
Let f′(x)=ax2+bx+c
f(x)=ax33+bx22+cx+d
⇒f(x)=2ax3+3bx2+6cx+6d6
Now, f(1)=2a+3b+6c+6d6=6d6=d
and f(0)=6d6=d
∴f(0)=f(1)
⇒f′(x) will vanish atleast once betweeen 0 and 1 (by Rolle's theorem)
∴ atleast one of the roots of the equation ax2+bx+c=0 lies between 0 and 1